

D. Stimoniaris, D.

Tsiamitros, V.

Zacharaki, T. Kottas,

S. Maropoulos, M.

Stefanovski, Z.

Stepanovski, I.

Milosovska, N.

Susevski, K.

Micalevski, V.

Karagiannis, K.

Zarmakoupis

Energy Audits in Public Buildings

Overview

- Activities of PEEBPE project
- Description of Buildings, equipment and procedure of energy audits
- Difficulties during energy audits and measurements processing
- Results

Activities of PEEBPE project

- Detailed energy audit of 50 public buildings with in-situ measurements.
- Energy Efficiency Improvement Study of three public buildings in Prespes and Resen.
- Implementation of the Energy Efficiency Improvement Studies at the three public buildings (Kindergarden, Elementary School, Gymnasium).

Description of buildings, equipment and procedure of energy audits

Description of buildings, equipment and procedure of energy audits

Equipment:

- Photography camera
- ❖IR camera concurrent image saving of IR and real pictures under the same name.
- ❖Distance-meter.
- Thermal conductance measurements device (i.e. Hukseflux TRSys 01)
- Notebook interface of IR camera and Hukseflux
- ❖GPS device
- Laser mini temperature meter.
- ❖Humidity meter
- Light meter (Lux)
- ❖Digital waste gas analyzer

Description of buildings, equipment and procedure of energy audits

Energy Audit procedure:

- Architectural measurements in order to develop the plans of the buildings
- Building's history, usage, invoices.
- Scan with the IR camera to detect thermal bridges (thermography).

Energy Audit procedure:

Description of buildings, equipment and procedure of energy audits

❖Thermal conductance measurements – determined by thermography and history of the building (e.g. Agios Germanos).

Energy Audit procedure:

Description of buildings, equipment and procedure of energy audits

Heating system efficiency is estimated by the digital waste gas analyzer, the IRcamera scanning of the heating unit and the grid

DIFFICULTIES

- Refusal of most buildings managers to keep the heating on during the measurements.
- Refusal to proceed to the waste gas analyzer application, since this requires drilling at two points of the waste gas pipe
- Absence of datasheets of fuel consumption of previous years.

MEASUREMENTS PROCESSING

- Derivation of Architectural plans.
- Thermal bridges estimation

MEASUREMENTS PROCESSING

- Thermal conductance calculation.
- Matlab algorithm developed specially for the project and implements the Dynamic Analysis Method, according to ISO 9869

```
load -ASCII neo1.txt
  Nol=length(neo1);
                                                                                                   Name A
                                                                                                                      Value
  N=Nol-1;
                                                                                                    E CI
                                                                                                                      <1x109 double>
  gol=abs(neo1(2:Nol.1)):
                                                                                                    ₽ DT
                                                                                                                      <61x1 double>
  TI=neo1(1:No1,2);% it has one more element for the derivative
                                                                                                    📙 Dt
                                                                                                                     0.0316
  DT=neo1(1:No1,3);% it has one more element for the derivative
                                                                                                                      0.9040
                                                                                                                      <1x109 double>
                                                                                                    Lamda
  m=3;% this is the maximum value
                                                                                                    М
                                                                                                                      46
  r=5;%This varies between 3 and 10
                                                                                                    ΗN
                                                                                                                     60
  M=46:
                                                                                                    Nol
                                                                                                                     61
  if M<(2*m+3)
                                                                                                    ■ S2
                                                                                                                     317.3098
                                                                                                    S2_store
                                                                                                                      <1x109 double>
                                                                                                    S2min
                                                                                                                      49.1730
  p=N-M;% from the Te, TI matrices it is obvious that we need p+1 temperat.
                                                                                                    П
                                                                                                                      <61x1 double>
                                                                                                                      <61x1 double>
  tau min=Dt/10;
                                                                                                                      <46x9 double>
  tau_max=(p*Dt)/2;
                                                                                                    Тx⊞
                                                                                                                      <9x46 double>
  q=qol(p+1:N);
                                                                                                                      <9x9 double>
  tau(1)=tau_min;
                                                                                                    ₽ Zest
                                                                                                                     [0.9040:7.2351e+03:1....
  kappa=1;
                                                                                                                     [0.8669,0.4895,0.0281]
while tau(1)<tau_max
for i=1:m
                                                                                                                     59
      tau(m+1-i) = tau min*(r^(i-1));
                                                                                                    📙 kappa
                                                                                                                     110
                                                                                                                     3
                                                                                                     min
                                                                                                                     75
for i=1:m
                                                                                                    neo1
                                                                                                                      <61x6 double>
      b(i) = exp(-Dt/tau(i));
                                                                                                                     14
                                                                                                                      <46x1 double >
for i=(p+1):N
                                                                                                                      <46v1 double >
       for j=1: (2*m+3)
                                                                                                                      <60x1 double>
          X(i-p,j)=0;
```


MEASUREMENTS PROCESSING

❖Insertion of all data to the relative software that derives the EEC.(Agios Germanos elementary school)

❖Thermal Conductance Coefficients Results

Results

	Thickness (m)	L(W/m^2K)
Stone wall A	0,4	1,1547
Stone wall B	0,7	0,8968
Stone wall C	0,8	0,5846
Old small compact brick	0,7	1,3473

Results

<u>Upgrade from Z class to B+ (90 % energy saving).</u>

- ❖Installation of external thermal insulation
- thickness 10cm.
- Redesign and construction of the heating network.
- ❖Heat pump water-air.
- Installation of a smart heating management system (developed by the Technological Educational Institute of Western Macedonia)
- ❖Replacement of illuminants with type led.
- ❖Building energy management system (KNX).

Results

<u>Upgrade from Z class to B+ (90 % energy saving).</u>

PEEBPE project

THANK YOU!