RAPIDLY-DEPLOYABLE, SELF-TUNING, SELF-RECONFIGURABLE NEARLY-OPTIMAL CONTROL DESIGN FOR LARGE SCALE NONLINEAR SYSTEMS AGILE

FP7-ICT-2009.3.5: Engineering of Networked Monitoring and Control Systems

Optimization-based Active Techniques for Energy Efficient Building Control

Iakovos Michailidis^[a,b], Simone Baldi^[a], Elias B. Kosmatopoulos^[a,b], Yiannis S. Boutalis^[b]

[a]Information Technologies Institute, Centre of Research & Technology - Hellas (I.T.I.-CE.R.T.H.) [b]Department of Electrical and Computer Engineering Democritus University of Thrace

1st – 3rd June 2014 International Conference on Buildings Energy Efficiency and Renewable Energy Sources 2014

Outline

- Part I: Optimization Algorithms (sketch)
 - Building Optimization and Control (BOC)
 - Active techniques
 - Objective function (performance)
 - □ The PCAO BOC
 - > Basic architecture
 - Model-based
 - Fully-adaptive
 - Interfacing:"Plug-n-Play" nature

Outline

- Part II: Real-life Experimental Results (more emphasis on this part)
 - □ Test Case1, Chania, Greece
 - > 10 offices
 - > EnergyPlus (inaccurate) model
 - Cooling with A/C
 - □ Test Case 2, Kassel, Germany
 - > 22 offices
 - > TRNSYS (validated) model
 - Heating with concrete activation slabs

Part I: Optimization Algorithms

How to measure performance: example, cooling problem

 Optimize cooling energy demands, while keeping comfort conditions between satisfactory levels

$$Total_{score} = t*Energy_{score} + (1-t)*Comfort_{score}$$

- \blacktriangleright Energy_{score} is
 - energy absorbed from the electric grid=energy consumption (in absence of any renewable sources) or
 - <u>effective energy absorbed from the electric grid grid≠energy consumption</u> (in the presence of renewable sources)
- Comfort_{score} is
 - Fanger index (many sensor required) or
 - Other comfort standards (typically require only zone temperature and humidity)
- Comparisons: with simple strategies, called Base Case Scenario (BCS) or Rule-Based Controller (RBC), e.g.
 - HVAC setpoint at 24 °C and 25 °C during office hours

German Comfort standard

Energy and Comfort score is much more than a simple trade-off

Table. PCAO simulation results (1 week)

	Energy from the grid [kW]/ Improv.[%]	Total Discomfort/ Improv.[%]
RBC= 25°C	13.5/ 0	14.8/ 0
MB L=1	10.0/ 25.9 %	6.7/ 54.7 %
MB L=4	9.8/ 27.4%	5.3/ 64.2%
RBC= 24°C	19.7/ 0	10.2/ 0
MB L=1	10.0/ 49.2 %	6.7/ 34.3 %
MB L=4	9.8/ 50.2%	5.3/ 48.0%

- ▶ Energy improv. 25-50%
- Fanger improv. 35-60% BOTH ENERGY AND COMFORT CAN BE IMPROVED!!

How to improve performance? Example, demand shaping

- Pre-actively schedule the HVAC so as to minimize the energy requirements from the grid
- We can play with the HVAC set points in an energy/comfort efficient way

PCAO basic architecture: switching linear controllers

- How to select the number of switching controllers:
 - From a theoretical point of view the larger the number, the better is the performance
 - Interestingly, in practice we verified that such a number does not to have to be large to achieve a good performance.
 - It suffices to "intelligently" design the switching strategy (i.e., when to switch from one linear controller to another) in order to achieve a good performance with a small number of switching linear controllers.
 - In our examples, we select at maximum 4 controllers, depending on the external temperature

Two version of PCAO: Model-based and Fully Adaptive

Model-based: it uses a Building Energy model to predict the future effect of the control action

Fully-Adaptive: it learns on-line the optimal control policy (it can be very robust to modelling errors)

Interfacing PCAO to Test Cases: "Plug-n-Play" nature

 Straightforward, plug-n-play interconnection (input/output data from the building)

Part II: Real-life Experimental Results

Considerations for Buildings

Test Case 1 (Poorly Insulated Building)

- Both <u>Model-</u>
 <u>based</u> and <u>Fully-</u>
 <u>Adaptive</u> have
 been tested
 - vs. Rule Based Control (RBC)
- The RBC 25°C was used
 - emphasis on energy consumption reduction

Model-based PCAO with demand shaping

Outdoor temperature 0.9 · February was 0.5 °C hotter 0.8 March 0.7 during the PCAO - April 0,6 Total Radiation (kWh/m2) 0,5 experiment \rightarrow the real 0,4 0,3 improvements are 0,2 August bigger, 22% 0,1 September October 4,00 5,00 6,00 7,00 8,00 9,00 11,00 12,00 15,00 17,00 18,00 19,00 —■— November —**:**— December the Electrical Grid [kW] Hours Model-based RBC 8% improvement in total energy consumption (PV + elect. grid) 19% improvement considering only the electrical grid → Good time [hh:mm] exploitation of PV

Set of experiments in summer AGILE 2012-2013 (8 weekends of experiments)

 9 experiments selected for evaluation (based on similar comfort conditions)

Table 1: 2012 Experiments (RBC vs AGILE)

Weekend	Saturday	Sunday
1	July 28 (RBC)	July 29 (AGILE)
2	August 11 (RBC)	August 12 (AGILE)
3	August 18 (AGILE)	August 19 (RBC)
4	August 25 (AGILE)	-

Table 2: 2013 Experiments (RBC vs AGILE)

Weekend	Saturday	Sunday
5	June 29 (RBC)	June 30 (AGILE)
6	July 6 (RBC)	July 7 (RBC)
7	July 13 (AGILE)	July 14 (AGILE)
8	July 20 (AGILE)	-

▶ 3 groups of 3 experiments each (1 RBC, 1MB, 1 FA)

Model-based and Fully-adaptive AGILE with no demand shaping

The Validation Case: Summary of Results

- Poorly Designed Building
- Model-based ~5% (similar comfort conditions with Base Case)
- Fully Adaptive >20% (similar or better comfort conditions than Base Case)

Considerations for Buildings

▶ Test Case 2 (Very Well Designed Building)

Test Case 2: Real System

- Due to building management policy reasons and restrictions only three thermally similar zones were available for AGILE tests
- Available zones (green highlighted area) for the AGILE real life implementation were zones 205, 206, 207 all three located on the second floor.
- Tests took place during December 2013.

Test Case 2: Office 207 (model available)

ROOM 207

Test Case 2: Sample Results

Test Case 2: Summary

- ▶ **Significant improvements**(see results evaluation presentation).
- **PCAO** close-to-optimal control schedule cannot be easily described with cooperating rules (when *exactly* to activate, for how long *exactly* to activate the heating devices, in order to save energy depend on highly nonlinear relationships between weather and system state conditions).
- Even high complex RBCs (more intelligent rules) cannot catch close-to-optimal behavior.
- Such RBCs design might demand years of tests and observations in the field for fine tuning.
- **PCAO requires few iterations** to end up with close-to-optimal fine tuned control.

Summary

Test Cases: Real-Life Experiments

Validation Case (Poorly-Designed Building)

The Fully-Adaptive PCAO provided better comfort conditions than both Model-based PCAO (due to modelling errors)

Test Cases: Real-Life Experiments

Test Case 2 (Well-designed Building, very good model)

In the presence of a good model, the model based PCAO overcomes any possible Rule-based Control

Thank you for your attention Question time